
Rishma Mendhekar and Isaih Porter
COM495/496: Senior Research
Large-Scale Particle Simulation on the GPU

Abstract

This study examines the increased performance of large-scale particle simulation on the
Graphics Processing Unit (GPU) against conventional implementation on the CPU. Usage of
General Purpose GPU (GPGPU) programming, which utilizes massively parallel computational
algorithms, has grown substantially over the last decade and particle simulation is one of such
examples. We developed a particle simulation program using a Compute Shader on the GPU to
calculate particle motion with a 3 dimensional Perlin noise algorithm. The current
implementation shows around 60 frames per second (FPS) in 4K resolution for about 8 million
particles of a point primitive type as well as a quad sprite model. The performance gain over the
equivalent version on the CPU is about a 200x speedup in frame rate. Both the CPU and GPU
versions of the program were created using C# and HLSL with Unity and DirectX. We deployed
this program for the art installation of The Posture Portrait Project at Connecticut College to
achieve an image-dissolving visual effect where each particle is generated from image pixels.
We have also implemented a boids flocking algorithm using the GPU using C# and HLSL. This
particle motion requires significantly more computation than Perlin noise as each particle will
need to be aware of each other particle’s location. We ended up with three versions of boids
flocking with differing levels of CPU/GPU involvement-- one version where boids were
rendered as GameObjects, as sprites, and as polygons. The GPU used for testing both particle
systems was an Nvidia Geforce GTX 1080 and the CPU an Intel Core i7-6700k @ 4GHz.

Introduction:

We are researching methods of creating a large-scale particle simulation using a GPU.
One of the problems with dealing with such a large amount of data is that the simulation takes
substantial computational time due to the CPU’s inability to process and interpret large numbers
of pixels in real time. The goal of the research is taking most of the stress away from the CPU
and giving the GPU most of the work. There is already a trend of software moving towards
general-purpose computing on graphics processing units (GPGPU); such as Adobe Photoshop
and Premier, and even MATLAB​6,7​. We analyze and compare the efficiency of the GPU to that
of a CPU in order to optimize a real-time particle field using large, dense data. We utilize
DirectX in conjunction with Unity, resulting in a Unity plug-in that creates particles based off of
millions of pixels from a 4K resolution image. Each of these images contain millions of pixels;
the particles will be initiated based on the position and color of these pixels.

We first conducted a literature review on large-scale particle systems. Jesper Hansson
Falkenby’s bachelor’s thesis, Physically-based Fluid-particle System using DirectCompute for
Use in Real-time Games, discussed GPU usage for fluid-particle systems in games. Falkenby
implemented a real-time fluid-particle system with two different fluid physics models in addition
to a gravity-only model. Though all of the fluid models were scalable to around a million
particles, the gravity-only model performed much better than the other physics model because it
did not require the calculation of grids, sorting, collision response, etc. In Lutz Latta’s article

“Building a Million-Particle System”, we reviewed stateless and state-preverserving particle
systems on the GPU. Latta’s paper also discussed particle data storage and a six-step algorithm
for simulation and rendering particles. The six steps discussed were -

“1. Process birth and death
2. Update velocities
3. Update positions
4. Sort for alpha blending (optional)
5. Transfer texture data to vertex data
6. Render particles” (Latta, p.1)

Similarly, we first initialize our particles in the CPU-based C# file. The particles are then passed
to the compute shader to update position and motion, and then to the vertex and pixel shaders to
calculate and apply particle color. We also reviewed John Nickoll’s and William J. Dally’s 2004
article “The GPU Computing Era” to gain insight on CPU and GPU parallel processing. To
implement Boids Flocking, the main text we reviewed was Craig Reynolds’ “Flocks, Herds, and
Schools: A Distributed Behavioral Model”. Using Reynolds’ paper, we were able to gain a
thorough understanding of the flocking algorithm, specifically the three main steering
behaviours-- separation, alignment, and cohesion.

Methods:

During first semester, we created a particle simulation program which uses the GPU to
calculate the motion of the particles. The program is made up of four components: a C# script, a
compute shader which calculates the motion of each particle, a vertex shader which calculates
particle color, and a pixel shader which applies color to each particle. When a user uploads an
image, the program generates particles based on the pixels of the image. For example, if the user
selects a 4K image (2048 by 4096 pixels) then there will be around 8 million particles. Each
particle moves independently and randomly based on a Simplex noise algorithm implemented in
the compute shader. We experimented with a variety of motion patterns before implementing the
Simplex Noise and plan on implementing numerous motion patterns from which the user can
choose.

We then created a second version of the program which uses the CPU to calculate the
motion of the particles. More specifically, the motion of each particle is calculated in the C#
script before the particle data is passed to the shaders. The CPU version of the program was
created so that a comparison between the conventional method (CPU calculated motion) and a
GPU-accelerated version of the program could be made. The comparison was achieved by
tracking the frame rate of the simulation achieved by each of the two implementations. Finally,
although the original particle structure was a point, we converted to a billboard type so that the
particles will face Unity’s camera regardless of its position. This more advanced type not only
looks more aesthetically pleasing, but also requires more computation and rendering time on the
GPU.

For the tests, an Alienware machine was used: Intel I7-6700k CPU with 32GB RAM and
Nvidia Geforce GTX 1080 GPU. By allowing the program to run using varying image sizes from
100 thousand particles to 8 million particles on both the CPU and GPU, we collected and
recorded the frames per second (FPS) over 30 seconds and calculated average FPS.

In second semester, we began work on an optimized GPGPU version of boids flocking.
Using Daniel Shiffman’s version of boids flocking​9​, we made changes to Jiadong Chen’s

GPGPU implementation of boids flocking​2​ found on GitHub. Chen’s version of the program
calculates boid motion on the compute shader, which is already a marked improvement than
calculating the separation, alignment, and cohesion of each boid on the CPU. However, Chen’s
version of boids flocking renders each boid as a GameObject in Unity using the CPU. Having
identified this as the bottleneck point of the graphics rendering process, we now needed a GPU
version of rendering the boids. We ended up comparing the CPU GameObject version with a
Sprite version of the boids (using 2D sprites) as well as a Polygon object version of the boids
(using 3D polygons). The GameObject version instantiated the boids into the scene from the
CPU and then calculated their movements on the GPU; however, the overhead of tens of
thousands of GameObjects adds up quickly while their data could simply be remembered by the
GPU and all drawn at once.. Therefore, we expected the Polygon and Sprite versions to be much
more successful in producing a smooth animation.

Results:

The graph below illustrates the difference in performance between CPU and GPU
implementations of the particle simulation.

While the CPU can handle smaller number of particles at an acceptable frame rate

(around 30 FPS), this implementation quickly became unbearable to watch when the number of
particles was increased. The version of our program that uses a compute shader to change the
particles’ properties can maintain a smooth frame rate (>60 FPS) even with 8 million particles.

The graph below shows the difference in average frame rate over 30 seconds for the three

versions of boids flocking.

The GPGPU rendering-only version far outperformed the CPU rendering version of boids

flocking. Again, the CPU was able to render the boids at an acceptable frame rate for the smaller
numbers of boids but was extremely slow as the number of boids increased. The sprite and
polygon versions had similar frame rates although they were both much faster than the
GameObject version. We speculate that this is due to the large number of calculations needed for
all the versions.

Discussion/Conclusion:

From the results found by this study, it is clear that GPU-based computation drastically
improves the performance of large-scale particle simulations. With most modern displays
running at 60 frames, it is clear that the CPU needs more help with general computation by the
GPU in order to create smooth simulations of thousands and even millions of particles. GPGPU
programming can be used to accelerate all kinds of software that includes particles simulations,
which can take great advantage of parallel computation. In terms of future work, we would like
to create Unity plug-ins or packages so that others can utilize large scale particle systems in their
own work. Additionally, we would like to work on optimizing the boids flocking further so that
the calculations don’t weigh down the frame rate as we observed during our tests.

Literature cited:

1. Carr, Nathan. Hegeman, Kyle. Miller, Gavin S.P.. 2006. Particle-Based Fluid Simulation on
the GPU. ​https://link.springer.com/content/pdf/10.1007%2F11758549_35.pdf
2. Chen, Jiadong. October 24, 2017. Unity-Boids-Behavior-On-GPGPU.
https://github.com/chenjd/Unity-Boids-Behavior-on-GPGPU
3. Direct to video. 2009. A thoroughly modern particle system.
http://directtovideo.wordpress.com/2009/10/06/a-thoroughly-modern-particlesystem/
4. Falkenby, Jesper Hansson. 2014. Physically-based fluid-particle system using DirectCompute
for use in real-time games. Belkinge Institute of Technology.
http://www.diva-portal.org/smash/get/diva2:832945/FULLTEXT01.pdf
5. Fournier, Antoine. 2015. XParticle. https://github.com/antoinefournier/XParticle
6. Latta, Lutz. 2004. Building a Million Particle System.
https://www.gamasutra.com/view/feature/130535/building_a_millionparticle_system.php
7. “MATLAB GPU Computing Support for NVIDIA CUDA-Enabled GPUs.” MATLAB &
Simulink , ​www.mathworks.com/discovery/matlab-gpu.html​.
8. “Photoshop Graphics Processor (GPU) Card FAQ.” Adobe ,
helpx.adobe.com/photoshop/kb/photoshop-cc-gpu-card-faq.html.
9. Reynolds, Craig. “Boids Background and Update.” ​Reynolds Engineering and Design​, 29 June
1995, ​www.red3d.com/cwr/boids/​.
10. Shiffman, Daniel. “Flocking.” Processing, processing.org/examples/flocking.html.

https://link.springer.com/content/pdf/10.1007%2F11758549_35.pdf
http://www.mathworks.com/discovery/matlab-gpu.html
http://www.red3d.com/cwr/boids/

