Swift Research Paper
Philip Winchester
Independent Study
Professor James Lee

Swift is Apple’s new app development language. To use Swift the user has to
have a Mac, or a Mac operating system, and Xcode. Xcode is Apple’s IDE that is
designed around Swift and specifically OS X and iOS development with Swift. Swift has
received some dubious opinions upon its’ release, because it is designed to be user
friendly. Most notably Swift allows you to use emoji’s as variable names, which feels like
a gimmick since it serves no practical purpose. However, once you start working with
Swift you can see that the language is powerful and designed with very specific goals.

The main goal of Swift is to be a highly readable and writable language. It is a
C-based language, which means that Swift is the spiritual successor to Objective-C.
Objective-C was the old language used by Apple to develop its software and also used
by the public for app development. Now Swift has taken over that mantle as Apple’s
main development language. However, this means that many aspects of Xcode that
work with Swift are still being developed. Also the online resources to help with Swift are
scarce and the places you can learn Swift are equally slim. If you manage to find a good
online resource and begin studying Swift you will find it an incredibly easy to learn
language.

First off, Swift takes a page out of Python’s book and removes the need for
semicolons at the end of every line (you can still use them if you want but they are
unnecessary). Next, and again similarly to Python, variables do not need to be typed.
Apple took this approach to make writing Swift easier, since once a variable is typed,

which it does by inference, then the programmer will need to convert the variable if they

Swift Research Paper
Philip Winchester
Independent Study
Professor James Lee

wish to change it or somehow use it outside the bounds of a certain type. This means
that despite appearances, Swift is a strongly typed language. Swift also utilizes both
for-in loops and for loops. Finally Swift allows the programmer to define variables as
either “var” or “let”, which defines the variable as going to change or going to be
constant, respectively. Swift encourages programmers to utilize constants wherever
possible since it leads to safer code. The safety of Swift is one of its main underlying
traits, variables are strongly typed and the use of constants is expected. Both of these
ideas mean that programs are more consistent and less likely to confusing errors.
These styles are not unique to Swift, but Swift implements them in a way that is easy to
use and makes reading code simple.

Swift's capabilities for classes, structs and, enums are also well developed.
Classes have inheritance from superclasses and must have initializers. Structs are a
more simplistic class that do not have inheritance and do not necessarily require an
initializer. Finally enums in Swift are slightly different than other languages and allow the
programmer to create a unique data type with strict restrictions. None of these are
unique to Swift, but Swift has its own unique take on each of these types. Swift also has
the usual set of data types (int, float, double, string, bool, etc.) as well as built-in array
and dictionary data structures. All of this does not set Swift above any other language,
but Swift does not try anything outside of the box with these systems and sticks to the

well established styles used by many other languages.

Swift Research Paper
Philip Winchester
Independent Study
Professor James Lee

Swift is a language that is intended to be used with apps primarily, but Xcode
comes with a file type that allows programmers to test code easily. These are called
“Playgrounds” and they take advantage of Xcodes real-time compiler and add console
display line by line with the code.

Figure 1:

var windSpeed = 5 5

65 switch windSpeed {
case @...3:
println("It couldn't be calmer")
case 4...6:
println{"There's hardly a breeze") There's hardly a breeze
case J...9:
println("Hurricane! Batten down the hatches")
case 16...12:
println{"You're done for kid")
default:
/fdo nothing
break

//Loops

//while, do—while, for (for with initializer; condition; increment ar for in)

//initializer for loop
for var 1 = 8; 1 < 108; i++ {

B5 printin{i) (100 times)
}
fifor in loop
var total = @ (1}
for j in 1..<108{
Ll total = total + j {99 times)
93 println("The total is \(total)") The total is 4950
o var title = "Strawberry Ice-Cream" Strawberry lce-Cream
p6 for eachChar in title{
97 println{eachChar) (20 times)
o8
var running = true true
while running{
println{"This is just like while loops in Python") This is just like while loops in Python
running = false false
}
var doRunning = true true
do{
doRunning = false false
printin{"The body of this while loop will execute at least once™) The body of this while loop will execute at least once

} while doRunning

Figure 1 is an example of a playground, which allows you to type code and Swift will
display the number of times that the loops execute and what outputs will be displayed.

In cases of more complicated code it is possible to get a more detailed view of each

Swift Research Paper
Philip Winchester
Independent Study
Professor James Lee

output, including the history of specific variables. There is also an execution slider to
allow for easy debugging, so a programmer can follow their code bit by bit. Playgrounds
are simple to set up and don’t take any of the complicated set-up of a full project, but
don’t allow for good OS X or iOS testing. These playgrounds are a great way to test
code, since running Swift files in the Mac Terminal is difficult (the command is “xcrun
swift filename.swift” if you were curious). These playgrounds are a great way to learn
the language and also to learn programming in generally since it allows for simple
debugging and the output is directly next to each line of code. However, how does
Swift's processing power stack up against other high level languages?

To test the power of Swift | decided to create a simple two dimensional array and
attempt to index into it to find a specific value. | also did this same program in Python
and Java to compare the speed at which they complete it compared to Swift. The
screenshots of my code are below and | tried to keep these 3 programs as simple as
possible. However, the goal was to calculate the processing time for each languages
program and compare them. However, for the first version of these programs | had
trouble getting them completely on even ground for fair comparison, so | will try and
include all the difference | noticed to be as transparent as possible. For Java | couldn’t
find a clear way to convert it from nano-seconds to seconds, so the output is in
nano-seconds. Roughly the Java program takes 2.3 seconds to complete. The Python

program prints out out the value in seconds and comes out to 5.2-5.5 seconds

Swift Research Paper
Philip Winchester
Independent Study
Professor James Lee

depending on whether it is the first time running the program or not. So roughly twice as
long as the Java program.

Finally the Swift file was much more difficult to work out. First | couldn’t use a
playground since | wanted to find the compile and run time of the program. Playground’s
compile in real-time so that wouldn’t allow me to compare it against the Python and

Figure 2: Java Two Dimensional Array

TwoDimensionalArray{

void main{String[] args}{
int numRows]
int numCols

int twoDArray[]1[];
int index = @;
long start A
long search

int runs 16

System.out.println("This program will test the processing power of Java");

twoDArray int [numRows] [numCols] ;

(int 1 = @2 1 < numRows: i++){
(int j = 8; i < numCols; j++){
index++;
twoDArray[il [j1 = index;

}
start - System.nanoTime();
System.out.println(start);

Random rand Random() ;
int randVal = rand.nextInt(index);
System.out.print1n(randval) ;

(int i = @; 1 = index; i++){
(i randval){
System.out.println(“Found " + Integer.toString(randval) + " in the Array");
1

}
}
search = System.nanoTime();
System.out.printin(search);

long runtime = System.nanoTime() - start;
System.out. format("The CPU Runtime of the Program was: " "Sd%n", runtime

Swift Research Paper
Philip Winchester
Independent Study
Professor James Lee

Figure 3: Java Printout Values

Philips-MacBook-Pro:Java PhilipWinc$ javac TwoDimensionalArray.java
Philips-MacBook-Pro:Java PhilipWinc$ java TwoDimensionalArray

This program will test the processing power of Java
1421979801336363000

5525179

Found 5525179 in the Array

1421979801342469000

The CPU Runtime of the Program was: 6148

Philips-MacBook-Pro:Java PhilipWincs I

java file. However, the more important problem is that | couldn’t find a proper way to
calculate the cpu processor time for Swift. This highlights the main issue with Swift,
which is that it is such a new language that the online resources are difficult to find and
especially on such a specific part of the language. The only help | could find was
working with clock elements in Xcode for iOS. With all that clarified | ran the Swift file in
Terminal and used a stopwatch to record the time. The test number for both Python and
Java was a 5000 x 5000 array, but in Swift | couldn’t get the completion time on that
large an array. Compiling Swift in Terminal with a 5000 x 5000 array ended up with a 40
minutes elapsing before | stopped my program. | tried this same program, but in a
playground and ran it for 2 hours before | had to stop. | was 4 million iterations through
my nested loop to populate the array, before | had to stop my program. Finally | ran a
500 x 500 program in the playground, which finished it’s task in roughly 3-4 minutes.
Swift is a language designed with specific purposes in mind, and those purposes do not
include processing large data structures for information. Swift is designed for app

development, but lacks the adaptability that many other high level languages possess.

Swift Research Paper
Philip Winchester
Independent Study
Professor James Lee

Figure 4: Python Two Dimensional Array

r-

lef main():
##Getting the CPU clock at the start of this program
clockStart = datetime.now()
print("The Starting CPU Time is: " + str({clockStart))

##Generating the 2d Array and searching it

table, size = genArray()

clockGen = datetime.now()

print("Generated the array in " + str(clockGen - clockStart))

searchArray(table, size)
clockSearch = datetime.now()
print("Found the walue in the array in '

+ str(clockSearch - clockGen))

##Getting the final CPU time and calculating total time
clockEnd = datetime.now()

print("The Final CPU Time is: "+ str(clockEnd))
clockFinal = clockEnd - clockStart

print("The Overall Time Elapsed is: " + str(clockFinal))

lef genArray():
index = 0
dlval, diZval = 5000,5000

table = [[0 for i in range(dlval)] for j in range(d2val)]
for dl in range(dlVal):
for d2 in range(d2val):
index += 1
table[dl][d2] = index
#print(table)
| return table, index

def searchArray(arr, size):
randifum = randrange(0, size + 1)

or i in arr:
f i == randtium:

breal
print(“Found " + str(randNum) + " in the 2d array")

main()

Figure 5: Python Printout Values

>

The Starting CPU Time is: 2015-05-13 12:42:44.789774
Generated the array in 0:00:05.493958

Found 3511200 in the 2d array

Found the wvalue in the array in 0:00:00.016589

The Final CPU Time is: 2015-05-13 12:42:50.304040

The Overall Time Elapsed is: 0:00:05.514266
>

Figure 6: Swift Two Dimensional Arrray

Swift Research Paper
Philip Winchester
Independent Study
Professor James Lee

// Playground — noun: a place where people can play

import Cocoa
import Foundation

func genArray(){

var testArray = [[Int]]() 0 elements
var index = @ 0
var rows = 588 500
var cals = 508 S00
let sDate = NSDatel) “May 13, 2015, 1:56 PM
for x in @..=cols {
testArray.append(Array(count: rows, repeatedValue:Int()})}) {500 times)
}

for i in B..<cols {
for j in @..<rows {

index++ (250000 times)
testArray[i]l [j] = index (250000 times)
}

}
let eDate = WSDatel) May 13, 2015, 1:59 PM
Sfprintin{testArray)
println{"success") SUCCRSS
printin{index) 250000
println{testArray) [1,2,3,4,5,6,7,8,9,"

Swift is a great language for its readability and writability but is definitely an Apple
language designed to work specifically with Mac products. Swift is a great language for
it's job and Xcode is a intuitive IDE to assist with app development. However, Xcode is
still being updated and this means that the current version (6.1.1) has some bugs and
the promised intuitive debugging is not there yet. Currently the Xcode debugger actually
has incredibly vague errors that takes thorough knowledge of your code and how Swift
works. Xcode does have a way to line by line go through your code by inserting
breakpoints, which is helpful and is the most helpful debugging tool. Overall Swift with
playgrounds is a great way to learn the language because of it’s real-time compiling and
real-time error-checking, but only Mac users will be able to utilize these tools. App

Development is done through an intuitive Ul that allows drag-and-drop connections and

Swift Research Paper
Philip Winchester
Independent Study
Professor James Lee

almost seamless code interpretation. Swift is a great product but it is definitely an new
language that is using a developing IDE, which has specific requirements to be used to

the best of its abilities.

Swift as an iOS Tool:

The design decisions of Swift are all focused on its power an iOS Tool. In this
aspect, Swift wouldn’t be anything without XCode. They work together well and improve
the process of designing an iOS application. Swift is a mostly finished language, but
XCode is currently being updated and so is prone to crashes. Twice during my time
working on my project XCode fully crashed my whole computer and many more times
just crashed as an application. However, the potential for a strong tool is definitely there.
Xcode’s auto-fill feature means that remembering all the different NSObjects that are
inevitably part of iOS developing, is not necessary. You need to be familiar with what
each object is, but XCode will help you fill out the name, remind you how to initialize that
NSObiject, and help you remember what functions each NSObject has. None of this
groundbreaking, but is a necessary tool to save time for developers.

Another strong tool in XCode, is the use of drag and drop in placing Ul objects in
the storyboard. This means that creating buttons, labels, and any other Ul element in
your apps storyboard is just a drag-drop-drag-link procedure. Meaning you can drag it in

from the list of Ul Objects, drop it in your page, then drag from that Ul element to your

Swift Research Paper
Philip Winchester
Independent Study
Professor James Lee

code and then link those two things together. So XCode creates the necessary code
that will work behind the scenes in your app. You can then change those features
however you want, but Swift handles all the communication between your code and
your app. This means that a developer focuses on how the app functions and how it
looks, instead of managing how it operates.

The final tool that is a major aspect of iOS development is Apple Human
Interface Guidelines (HIG). Apple HIG is the system, style, and best practices that Apple
has determined for iOS development. This is outlined on the Apple Developer website
but mostly is a persistent set of restrictions on what you can do. These restrictions are
almost entirely positive, and are designed to improve the user experience of your app.
However, there are some downsides. The five basic style of apps that you can use for
your app, each have a specific person. | tried to use the “Tab Bar System” to allow my
users to switch between different aspects of the app, however | needed to store some
global information or pass that information between the tabs. However, after several
weeks of trying different ways of accomplishing this, and the lack of resources for me to
find answers, | came to the conclusion that the Tab Bar System is not designed for that
purpose. The Tab Bar System is designed to be used with an external server, where
you can query the information you need, not store all this information locally. Therefore,
my simple local storage idea was not possible. | redesigned my app and got everything

working, but with how new Swift and XCode are | had difficulty getting help and finishing

10

Swift Research Paper
Philip Winchester
Independent Study
Professor James Lee

my idea. Despite my personal story, the idea of firm HIG is something that is very
beneficial to iOS development. | just wish that the information on it was more clear.

In conclusion, Swift and XCode form a formidable tool to create a myriad of apps.
Learning Swift as a language is simple, everything is very high level and so there is not
much complicated syntax that you need to learn, and playgrounds form a great tool for
testing ideas and creating simple programs. iOS development with Swift and XCode is
very user friendly and allows beginners to feel accomplished, but also means that
professionals can create some impressive apps as well. For Swift to become a strong
tool, it just needs more time. Time for updates in XCode so that it doesn’t crash as
frequently. Time so that more online resources exist, so that new developers can learn
quickly. Time so that Objective-C isn’t as prevalent, so that new developers won’t have
to sift through Objective-C tools to find what they need with Swift. | look forward to
continuing to work with Swift in the future and | hope to be able to revisit this report in a

few years and update it after a few years of experience.

11

