
Abstract 

This project involves real-time manipulation 
of live video feed with user head-tracking 
data to provide a viewing experience similar 
to that of looking out a window. While 
concepts related to head tracking to enhance 
viewer experience have been considered in 
the past, we seek a comprehensive approach 
with the added integration of live video. This 
paper will discuss various implementation 
techniques used to optimize this experience. 

1.   Introduction 

With this project, we hope not only to push 
the technical boundaries of this problem to 
their logical ends, but also to engage with 
the ways this technology can impact and 
potentially heighten user experience. More 
broadly speaking, this project is concerned 
with considering the impact technology may 
have in ambient settings and the ways we 
can enhance and augment a user’s 
experience of video. Though our research 
never fully answers these questions, they are 
a guiding force in the direction of our 
technical research and development. 


By situating our problem within the confines 
of live video footage, we are forced to use 
more optimized solutions that minimize 
latency to allow for multiple levels of video 
manipulation in real time. For example, the 
use of general purpose GPU programming to 
correct for barrel distortion in a wide angle 
camera lens improved our theoretical frame 
rate by over one hundred times. 


In our efforts to maximize real ism, 
technologies used include a high definition 

network video camera and the second 
generation Microsoft Kinect. 


In the simplest terms, our technology works 
as follows: a user’s position is tracked by an 
overhead sensor. This data is used to zoom 
and pan feed from a networked camera to 
simulate the viewing angles and experience 
afforded by a real window. 


2.   Methods 

From the outset, the foundations of our 
project were based on providing an 
experience that not only maintained a high 
degree of realism, but also one that was 
intuitively and aesthetically pleasant. This 
means that our project was driven not by the 
intention to explore a specific technology, 
but rather an ongoing experiment in 
comparing the efficacy of a wide variety of 
implementation methods.


2.1. Materials 

Before providing a more in depth look at 
these methods, we will first give an overview 
of the various technologies and platforms 
used and why they were chosen for this 
project. From the outset, we knew Kinect 
would be our method of gathering user 
position data. In addition to being a relatively 
standard technology for applications like 
this, the Kinect provides three-dimensional 
data in an easily processed image format, 
with the x and y coordinates along the 
image’s x and y axes, and the depth values 
cleverly integrated into the pixel colors. By 
mounting this device on the ceiling, we are 
able to forgo more intensive face and body 
tracking in favor of simply tracking the 
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uppermost part of a user’s body--the head. 
We further elected to use the most recent 
Kinect V2, a decision that significantly 
reduced noise in our depth images. 


For our language and development platform, 
we opted to use Processing. Aside from 
having powerful native image processing 
capability and seamless integration with 
OpenGL, the language’s base in Java 
opened up the possibility of integrating a 
variety of Java methods. 


As for our video source, the Axis HD IP 
camera was chosen for two main reasons. 
From an insta l lat ion perspect ive, a 
networked camera al lows increased 
freedom; the camera can run without the 
need for a dedicated machine or a wired 
connection to the PC running the virtual 
window software. Beyond this, the camera’s 
high resolution means that even after 
zooming and other adjustments, the 
onscreen image will still be of acceptable 
quality. 


2.2. Implementation 

At the outset of this project, there was one 
visible problem that needed to be addressed 
before moving forward. This was the issue of 
correcting for the barrel distortion provided 
by our wide field of view lens. Though the 
wide field of view was ideal as a video 
source that could simulate the viewing 
angles of a window, the image’s distortion 
greatly reduced the believability of the 
program. In retrospect, our research into 
barrel correction was beneficial not only 
because of the interesting results produced, 
but also because it drove forward an 
ongoing philosophy of exploratory, problem-
solving based research.


Initially, we attempted to remedy the barrel 
distortion with a simple iterative barrel 
correction algorithm based on pseudocode 
found on the web . For each drawn frame, 1

the algorithm calculated which pixel from the 
distorted image should be placed at each 
location onscreen. While this effectively 

removed the distortion, it lowered our frame 
rate to unusable levels, with the image only 
updating once perhaps a couple of times per 
second. 


Seeking better results, we instead calculated 
the pixel displacement values in advance, 
using the same algorithm as above, and 
stored them in an array. The replacement 
pixel values are then called from the array 
without the need for calculation. While this 
seemed to improve the frame rate slightly, it 
was still more or less unusable. Moreover, 
this low of a frame rate would not bode well 
for the intensive head tracking and image 
manipulation that lay ahead. 


From here, we knew that this would need to 
be handled with off-CPU graphics shaders. 
By mimicking the approaches used on the 
CPU, we sought to create good comparison 
points when analyzing frame rate data later 
on. The iterative approach was implemented 
similarly in OpenGL, with a further addition of 
value interpolation to create a smoother 
image. For the pre calculated approach, we 
stored the desired pixel positions into an 
image file and loaded them as a texture on 
top of the original video feed. 


Our most early and naive approach at 
gathering head position data simply located 
the largest object in our depth image above 
an arbitrary threshold. The object detection 
was done by finding contours using the  
OpenCV computer vision interface. We 
calculated the average of these points to find 
an approximate head center point in the X 
and Y planes (that is, distance from the 
screen and location along the horizontal 
plane). These X and Y values, in turn, were 
used to pull head depth Z values from the 
Kinect’s depth image. 


An early and simple implementation method 
that greatly improved the usability of our 
program was the averaging of head position 
data. First, head X and Y centerpoints were 
calculated as an average of the past fifteen 
frames. Once this was established as the 
centerpoint, it was used to fetch the head 

 See Helland, Tanner. 1
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depth Z value. This depth position was 
averaged alongside all pixels touching its 
sides and diagonals (nine pixels in total). The 
average used for Z position drawing was 
also averaged over the fifteen most recent 
iterations.


While the concept of a dynamically changing 
thresholds is not new, we believe our 
approach to dynamic thresholding based on 
head positioning truly is novel.  The dynamic 2

thresholding works as follows; before it 
calculates the head’s center as described 
above , the p rogram finds a rough 
centerpo in t and uses i t to get an 
approximate depth value for the top of the 
user’s head. This is now used to set a new 
threshold a few inches below the user’s 
head. By doing this, we are able to reduce 
camera noise from the surrounding 
environment and ensure that the OpenCV 
contour includes as little of the torso and 
shoulders as possible. When no user is 
present, the threshold returns to a much 
lower one to easily recognize a new user.


While the above methods made great strides 
in producing reliable and stable head 
position data, they took a major toll on 
performance. In the hopes of remedying this, 
we integrated multithreading into our 
program. Simply put, all head position 
calculation was offloaded to a separate 

thread. The main Processing draw loop 
could then call these values as needed 
without waiting for the calculations to be 
updated every time the loop ran. 


With this data calculated, onscreen zoom 
was calculated as a factor of the user’s Y 
position, and panning was adjusted in direct 
proportion to the user’s X and Z position.


2.3. Evaluation 

Our evaluation is, for the most part, based 
on the effects of various implementations on 
framerate. In our first set of data, we look at 
the effects of various barrel correction 
implementations on framerate. Though 
Processing provides a frameRate() function 
that outputs an approximate framerate, we 
found manually averaging iterations of the 
draw cycle over time to be more accurate 
and reliable. To this end, implementations of 
barrel correction were tested by iterating a 
counter for each iteration of Processing’s 
draw loop. The program was run for 
approximately two minutes, and frame rate 
was calculated by dividing the counter over 
the amount of time the program ran 
(calculated based on timestamps taken at 
the program’s start and close). 


The approach for assessing multithreading 
performance took a very similar tack to the 
barrel correction mentioned above, with one 
minor difference. Though both our single and 
multi thread programs used the very same 
framerate calculation as mentioned above, 
the performance of our separately spawned 
calculation thread was quantified slightly 
differently. Instead of iterating for every 
iteration of the draw loop, the counter 
variable iterated for every iteration of the 
position calculation thread. Averages over 
time, though, were ultimately calculated in 
the same way. By calculating the framerate 
provided from both implementations’ draw 
loop’s, as well as calculating the iterations 
per second of our multithreading position 
calculation function, we hoped to discover 
the degree to which position calculation 

 See Lai for an application of dynamic thresholding that improves cell phone location tracking.2
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bottlenecked the performance of our 
program. 


3. Results 

3.1. Conclusion 

The two data sets collected in our research, 
illustrated to the right and above, were 
completely polarized relative to our 
expectations. When looking at the barrel 
correction data, our expectations were almost 
exactly met. Offloading barrel correction to 
the GPU improved our performance by 
around one hundred times. Though it was 
slightly surprising that calculation allowed 
higher frames per second than lookup on the 
GPU side, these differences are negligible 
compared to the overall leap in performance 
between CPU and GPU calculations. 

On the other hand, our data gathered on the 
effects of multithreading on program 
performance is completely at odds with our 
expectations. We anticipated a higher 
framerate in our multithreading 
implementation’s draw loop, showing that 
position calculation was the major bottleneck 
in our single threaded implementation. 
Instead, the single thread implementation 
actually has a higher framerate than the 
multithreaded version. Further, the 
multithreaded calculation loop’s iterations per 
second were around ten times faster than 
either version’s draw loop. 

3.2. Discussion and Future Work 

Though we accomplished much of what we 
set out to in developing this project, there is 
still potential for future research. First, there 
is the problem of increased head tracking 
frame rate performance. Though we were 
able to get reliable head position data, it took 
a major toll on the program’s frame rate. 
While this increased performance will likely 
include optimization in terms of added 
functionality, there are also elements of the 
head tracking as implemented whose effects 
on frame rate performance have not yet been 
quantified. In this paper we looked at the 
ways our position tracking was a bottleneck, 
and the degree to which multithreading was 
able to remedy it. Future research might dive 
deeper into this problem, seeking to better 
explain our current data and improve future 
results.


This problem of finding a multithreading 
implementation that does not reduce 
position data quality relates to a second 
point, quantifying the effects that our 
existing implementation have not just on 
performance but also on quality of data. 
Though it seems apparent that dynamic 
thresholding and averaging of frames 
improve our head positioning, we have not 
yet empirically tested them. 


Beyond issues of performance, the 
overarching goals of this project call for a 
probe into the ways users can seamlessly 
interact with this technology. This means 
that calculation of viewing angles and user 
selection should be considered specifically 
from a user-centric perspective, and likely 
assessed with a user study. Beyond this, 
user studies may consider the software from 
an emotional and cognitive perspective, 
assessing how it affects users and how it 
compares to a real window or other ambient 
signage and displays. 
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