
Abstract

This project involves real-time manipulation
of live video feed with user head-tracking
data to provide a viewing experience similar
to that of looking out a window. While
concepts related to head tracking to enhance
viewer experience have been considered in
the past, we seek a comprehensive approach
with the added integration of live video. This
paper will discuss various implementation
techniques used to optimize this experience.

1. Introduction

With this project, we hope not only to push
the technical boundaries of this problem to
their logical ends, but also to engage with
the ways this technology can impact and
potentially heighten user experience. More
broadly speaking, this project is concerned
with considering the impact technology may
have in ambient settings and the ways we
can enhance and augment a user’s
experience of video. Though our research
never fully answers these questions, they are
a guiding force in the direction of our
technical research and development.

By situating our problem within the confines
of live video footage, we are forced to use
more optimized solutions that minimize
latency to allow for multiple levels of video
manipulation in real time. For example, the
use of general purpose GPU programming to
correct for barrel distortion in a wide angle
camera lens improved our theoretical frame
rate by over one hundred times.

In our efforts to maximize real ism,
technologies used include a high definition

network video camera and the second
generation Microsoft Kinect.

In the simplest terms, our technology works
as follows: a user’s position is tracked by an
overhead sensor. This data is used to zoom
and pan feed from a networked camera to
simulate the viewing angles and experience
afforded by a real window.

2. Methods

From the outset, the foundations of our
project were based on providing an
experience that not only maintained a high
degree of realism, but also one that was
intuitively and aesthetically pleasant. This
means that our project was driven not by the
intention to explore a specific technology,
but rather an ongoing experiment in
comparing the efficacy of a wide variety of
implementation methods.

2.1. Materials

Before providing a more in depth look at
these methods, we will first give an overview
of the various technologies and platforms
used and why they were chosen for this
project. From the outset, we knew Kinect
would be our method of gathering user
position data. In addition to being a relatively
standard technology for applications like
this, the Kinect provides three-dimensional
data in an easily processed image format,
with the x and y coordinates along the
image’s x and y axes, and the depth values
cleverly integrated into the pixel colors. By
mounting this device on the ceiling, we are
able to forgo more intensive face and body
tracking in favor of simply tracking the

�1

Real-Time Virtual Window Simulation
Christopher Giri

Connecticut College Department of Computer Science
Advisor S. James Lee

uppermost part of a user’s body--the head.
We further elected to use the most recent
Kinect V2, a decision that significantly
reduced noise in our depth images.

For our language and development platform,
we opted to use Processing. Aside from
having powerful native image processing
capability and seamless integration with
OpenGL, the language’s base in Java
opened up the possibility of integrating a
variety of Java methods.

As for our video source, the Axis HD IP
camera was chosen for two main reasons.
From an insta l lat ion perspect ive, a
networked camera al lows increased
freedom; the camera can run without the
need for a dedicated machine or a wired
connection to the PC running the virtual
window software. Beyond this, the camera’s
high resolution means that even after
zooming and other adjustments, the
onscreen image will still be of acceptable
quality.

2.2. Implementation

At the outset of this project, there was one
visible problem that needed to be addressed
before moving forward. This was the issue of
correcting for the barrel distortion provided
by our wide field of view lens. Though the
wide field of view was ideal as a video
source that could simulate the viewing
angles of a window, the image’s distortion
greatly reduced the believability of the
program. In retrospect, our research into
barrel correction was beneficial not only
because of the interesting results produced,
but also because it drove forward an
ongoing philosophy of exploratory, problem-
solving based research.

Initially, we attempted to remedy the barrel
distortion with a simple iterative barrel
correction algorithm based on pseudocode
found on the web . For each drawn frame, 1

the algorithm calculated which pixel from the
distorted image should be placed at each
location onscreen. While this effectively

removed the distortion, it lowered our frame
rate to unusable levels, with the image only
updating once perhaps a couple of times per
second.

Seeking better results, we instead calculated
the pixel displacement values in advance,
using the same algorithm as above, and
stored them in an array. The replacement
pixel values are then called from the array
without the need for calculation. While this
seemed to improve the frame rate slightly, it
was still more or less unusable. Moreover,
this low of a frame rate would not bode well
for the intensive head tracking and image
manipulation that lay ahead.

From here, we knew that this would need to
be handled with off-CPU graphics shaders.
By mimicking the approaches used on the
CPU, we sought to create good comparison
points when analyzing frame rate data later
on. The iterative approach was implemented
similarly in OpenGL, with a further addition of
value interpolation to create a smoother
image. For the pre calculated approach, we
stored the desired pixel positions into an
image file and loaded them as a texture on
top of the original video feed.

Our most early and naive approach at
gathering head position data simply located
the largest object in our depth image above
an arbitrary threshold. The object detection
was done by finding contours using the
OpenCV computer vision interface. We
calculated the average of these points to find
an approximate head center point in the X
and Y planes (that is, distance from the
screen and location along the horizontal
plane). These X and Y values, in turn, were
used to pull head depth Z values from the
Kinect’s depth image.

An early and simple implementation method
that greatly improved the usability of our
program was the averaging of head position
data. First, head X and Y centerpoints were
calculated as an average of the past fifteen
frames. Once this was established as the
centerpoint, it was used to fetch the head

 See Helland, Tanner. 1

�2

depth Z value. This depth position was
averaged alongside all pixels touching its
sides and diagonals (nine pixels in total). The
average used for Z position drawing was
also averaged over the fifteen most recent
iterations.

While the concept of a dynamically changing
thresholds is not new, we believe our
approach to dynamic thresholding based on
head positioning truly is novel. The dynamic 2

thresholding works as follows; before it
calculates the head’s center as described
above , the p rogram finds a rough
centerpo in t and uses i t to get an
approximate depth value for the top of the
user’s head. This is now used to set a new
threshold a few inches below the user’s
head. By doing this, we are able to reduce
camera noise from the surrounding
environment and ensure that the OpenCV
contour includes as little of the torso and
shoulders as possible. When no user is
present, the threshold returns to a much
lower one to easily recognize a new user.

While the above methods made great strides
in producing reliable and stable head
position data, they took a major toll on
performance. In the hopes of remedying this,
we integrated multithreading into our
program. Simply put, all head position
calculation was offloaded to a separate

thread. The main Processing draw loop
could then call these values as needed
without waiting for the calculations to be
updated every time the loop ran.

With this data calculated, onscreen zoom
was calculated as a factor of the user’s Y
position, and panning was adjusted in direct
proportion to the user’s X and Z position.

2.3. Evaluation

Our evaluation is, for the most part, based
on the effects of various implementations on
framerate. In our first set of data, we look at
the effects of various barrel correction
implementations on framerate. Though
Processing provides a frameRate() function
that outputs an approximate framerate, we
found manually averaging iterations of the
draw cycle over time to be more accurate
and reliable. To this end, implementations of
barrel correction were tested by iterating a
counter for each iteration of Processing’s
draw loop. The program was run for
approximately two minutes, and frame rate
was calculated by dividing the counter over
the amount of time the program ran
(calculated based on timestamps taken at
the program’s start and close).

The approach for assessing multithreading
performance took a very similar tack to the
barrel correction mentioned above, with one
minor difference. Though both our single and
multi thread programs used the very same
framerate calculation as mentioned above,
the performance of our separately spawned
calculation thread was quantified slightly
differently. Instead of iterating for every
iteration of the draw loop, the counter
variable iterated for every iteration of the
position calculation thread. Averages over
time, though, were ultimately calculated in
the same way. By calculating the framerate
provided from both implementations’ draw
loop’s, as well as calculating the iterations
per second of our multithreading position
calculation function, we hoped to discover
the degree to which position calculation

 See Lai for an application of dynamic thresholding that improves cell phone location tracking.2

�3

Barrel Correction Performance

Fr
am

es
 p

er
 s

ec
on

d

0

125

250

375

500

CPU Calc. GPU Lookup

487.189

407.239

7.3623.953

bottlenecked the performance of our
program.

3. Results

3.1. Conclusion

The two data sets collected in our research,
illustrated to the right and above, were
completely polarized relative to our
expectations. When looking at the barrel
correction data, our expectations were almost
exactly met. Offloading barrel correction to
the GPU improved our performance by
around one hundred times. Though it was
slightly surprising that calculation allowed
higher frames per second than lookup on the
GPU side, these differences are negligible
compared to the overall leap in performance
between CPU and GPU calculations.

On the other hand, our data gathered on the
effects of multithreading on program
performance is completely at odds with our
expectations. We anticipated a higher
framerate in our multithreading
implementation’s draw loop, showing that
position calculation was the major bottleneck
in our single threaded implementation.
Instead, the single thread implementation
actually has a higher framerate than the
multithreaded version. Further, the
multithreaded calculation loop’s iterations per
second were around ten times faster than
either version’s draw loop.

3.2. Discussion and Future Work

Though we accomplished much of what we
set out to in developing this project, there is
still potential for future research. First, there
is the problem of increased head tracking
frame rate performance. Though we were
able to get reliable head position data, it took
a major toll on the program’s frame rate.
While this increased performance will likely
include optimization in terms of added
functionality, there are also elements of the
head tracking as implemented whose effects
on frame rate performance have not yet been
quantified. In this paper we looked at the
ways our position tracking was a bottleneck,
and the degree to which multithreading was
able to remedy it. Future research might dive
deeper into this problem, seeking to better
explain our current data and improve future
results.

This problem of finding a multithreading
implementation that does not reduce
position data quality relates to a second
point, quantifying the effects that our
existing implementation have not just on
performance but also on quality of data.
Though it seems apparent that dynamic
thresholding and averaging of frames
improve our head positioning, we have not
yet empirically tested them.

Beyond issues of performance, the
overarching goals of this project call for a
probe into the ways users can seamlessly
interact with this technology. This means
that calculation of viewing angles and user
selection should be considered specifically
from a user-centric perspective, and likely
assessed with a user study. Beyond this,
user studies may consider the software from
an emotional and cognitive perspective,
assessing how it affects users and how it
compares to a real window or other ambient
signage and displays.

References

1. Helland, Tanner. "A Simple Algorithm for
Correcting Lens Distortion." Tanner
Helland. N.p., 10 Feb. 2013. Web.

�4

Threading performance
comparison

Ite
ra

tio
ns

 p
er

 s
ec

on
d

0

20

40

60

80

Single Thread Draw Multithread Calc. Thread

76.91

5.2210.46

2. Ijsselsteijn, Wijnand, Oosting, Willem,
Vogels, Ingrid, de Kort, Yvonne, and van
Loenen, Evert. “A Room with a Cue: The
Efficacy of Motion Parallax, Occlusion,
and Blue in Creating a Virtual Window”
Presence 17.3 (2008): 269-282. Web. 10
Nov 2014.

3. Lai, Yuan-Chen, Jian-Wei Lin, Yi-Hsuan
Yeh, Ching-Neng Lai, and Hui-Chuan
Weng. "A Tracking System Using
Location Prediction and Dynamic
Threshold for Minimizing SMS Delivery."
Journal of Communications and
Networks 15.1 (2013): 54-60. IEEE
Explore. Web. 5 May 2015.

4. Merritt, John. “Virtual window viewing
geometry” SPIE 1003 (1988): 386-392.
Web. 10 Nov 2014.

5. Offenhuber, Dietmar. “The Invisible
Display – Design Strategies for Ambient
Media in the Urban Context”. Web. 10
Nov 2014.

�5

